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Abstract The choice of mutation operators is a fundamental aspect in mu-
tation testing to guide the tester to an effective test suite. Designing a set of
mutation operators is subject to a trade-off between effectiveness and com-
putational cost: a larger mutation population might uncover more faults, but
will take longer to analyse. With the aim of resolving this trade-off, several
authors have defined an assortment of metrics to determine the most valuable
operators. In this work, we extend an existing quality metric by incorporating
an additional source of data, coverage information, and therefore investigate
the extent to which mutants that often covered but rarely killed can improve
the evaluation of mutation operators for the refinement of the test suite. As a
case study, we analyse C++ class-level operators based on the new coverage-
based quality metric to assess whether the original metric is enhanced. The
results when selecting the best-valued operators show that this metric has
great potential to help the tester in finding effective mutation operators. In
comparison with the metric from which is derived, the use of coverage data
allows to reduce the number of mutants but often losing fewer test cases and,
in addition, retaining those that seem hard to design.
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1 Introduction

Mutation testing (DeMillo et al., 1978) is regarded as a powerful mechanism
to assess and improve the test suite effectiveness, but it is also known to
involve a high cost that can preclude testers from making use of it. In this
technique, the tester intentionally injects simple syntactic variations into the
system under test (SUT) for the purpose of estimating the fault-revealing
ability of a test suite. As a result, several versions of the original code are
generated, called mutants, by means of mutation operators particularly defined
for each programming language. When a test case executed against a mutant
reveals its mutation (because of an observable difference in the output when
compared to the one of the original program), we say that the test case is
effective at finding faults. In this instance, the mutant has been killed (or the
mutant is dead). On the contrary, the mutants that remain undetected or alive
may provide the tester with the possibility of adding new test cases to the set.

Even in the case of small-sized programs, mutation testing is often an ex-
pensive process. Authors in this field have studied different methods to coun-
teract the effect of the number of mutants generated in order to propel the
technique for a definite uptake by practitioners (Jia & Harman, 2011; Of-
futt, 2011). The existence of mutants functionally equivalent to the original
SUT also limits its applicability in practice; the tester will need to undertake
the time-consuming task of determining which of the surviving mutants are
equivalent and cannot be killed by any input. Under these circumstances, a
well-designed set of mutation operators is a key factor for the success of the
technique. Measuring the quality of mutation operators is one of the aims
of researchers with the goal of identifying which are the most valuable. This
information offers an opportunity towards the reduction of the often unac-
ceptable cost of applying mutation testing. The definition of metrics giving
us an approximation of how good mutation operators are is based on the as-
sumption that some operators are more profitable than others. Studies in this
regard range from simple metrics, like the mutation score, i.e., the ratio of
dead mutants to non-equivalent mutants (Offutt et al., 1996), to more sophis-
ticated ones addressing other desirable features, such as the cost that entails
including each operator (Mresa & Bottaci, 1999) or the proportion of each
kind of mutants that they produce (Smith & Williams, 2009; Estero-Botaro
et al., 2010).

Recently, Estero-Botaro et al. (2015) formulated a promising metric with
the aim of estimating the value of each mutation operator for a more efficient
application of mutation testing in practice. To do that, this metric considers
the number of test cases killing a mutant and the number of mutants killed
by those test cases. Roughly speaking, this metric favours those mutation
operators that generate mutants detected by few test cases, and penalises those
operators that produce mutants killed by many test cases as well as those
that usually produce equivalent mutants. Additionally, the metric attaches
great value to operators with the potential to generate mutants that induce
the design of test cases which might only be created by inspecting few other
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mutants. Thus, the study of the empirical results based on this metric can
serve to foresee which operators will be more likely to help the tester mainly in
designing high-quality test cases: those test cases that detect non-trivial faults
and are hard to create. That means that, instead of measuring the ability of the
test suite to detect faults, this quality metric has great potential in targeting
the specificity of the test cases for the improvement of the test suite, as shown
in a recent study applying selective mutation based on this metric (Delgado-
Pérez et al., 2017b). Concretely, the authors highlight that 40% of the set of
mutants can be saved with a loss in the percentage of test cases under 6% on
average. Many of those mutants saved are equivalent, thereby reducing not
only the cost of mutant execution, but also the cost of mutant analysis.

While the coverage analysis of the test suite has traditionally been used
to avoid unnecessary executions in those mutants not covered by some of the
test cases (Schuler & Zeller, 2009; Papadakis & Malevris, 2011; Derezińska &
Szustek, 2012) (i.e., when the test cases do not execute the mutated state-
ments), Inozemtseva & Holmes (2014) took advantage of this information in
a recent study assessing the correlation between coverage and test suite ef-
fectiveness. They provided a more restricted version of the mutation score by
discarding from the calculation those mutants executed by none of the test
cases in the test suite. This is a fairer measurement since it does not consider
that the test suite is unable to reveal a mutation that is not even executed.

Problem: The quality metric by Estero-Botaro et al. (2015) overlooks
that not all mutants are exercised by all test cases, as raised by Inozemtseva
& Holmes (2014). In fact, only the test cases that actually reach a mutated
element might be able to reveal the defect injected into the SUT. A compari-
son of the number of test cases killing a mutant with the number of test cases
reaching it could lead to a more robust metric that helps design better test
suites at a lower cost.

Contribution: In this paper, we present a novel metric for measuring
the quality of mutation operators that incorporates coverage data (i.e., which
mutants are reached by which test cases) into the calculations. This metric is
derived from the notion of quality by Estero-Botaro et al. (2015) and, therefore,
it can be used as a method to know the best operators for the refinement of a
test suite with high-quality test cases. Intuitively, mutants killed by few of the
test cases that reach them should be more valuable than those mutants killed
by many of the test cases that execute them.

As a means to evaluate the proposed metric, we make use of selective muta-
tion (Wong & Mathur, 1993), a well-known cost reduction technique which has
been applied following different approaches (Offutt et al., 1993, 1996). With
selective mutation, the cost is eased by trying to exclude some of the operators
in the set without significant loss of effectiveness. However, we do not follow
the traditional approach of selecting a representative subset of the whole set
of operators, but one tailored to the purpose of this quality metric, which we
call test-quality selective mutation. The aim when applying test-quality selec-
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tive mutation is to give preference to mutation operators of high quality so
that the test suite is efficiently improved mainly with high-quality test cases.
Consequently, we do not calculate the mutation score, but new measurements
(test suite size and specificity) in order to estimate the quality of the test
suite that this selective approach could help us form. As a continuation of our
research line applying mutation testing to C++ (Delgado-Pérez et al., 2015,
2017b), we conduct our experiments on class-level operators for this language.

The main contributions of this paper are:

– A novel quality metric to measure operator effectiveness in the
refinement of a test suite that takes into account the coverage
of the test suite. We call the metric including this information coverage-
based metric. This quality metric allows for a more precise evaluation of the
quality of mutation operators than the original quality metric (from which
our metric is derived). We have also defined new terms to classify mu-
tants regarding the coverage information, such as coverage-based resistant
mutant or difficult to reach mutant.

– An evaluation of the coverage-based metric, using as a case study
class mutation operators in C++ and test-quality selective mutation. We
perform test-quality selective mutation after ranking the operators based
on the metric. By removing some of the operators which are at the bottom
of the classification sorted by the quality metrics, the results show that we
assume a low loss in the percentage of test cases in general.

– A comparison between the coverage-based quality metric and
the original quality metric. We define two new measurements, test
suite size and specificity, to estimate the effectiveness when applying test-
quality selective mutation. The comparison between metrics by using these
measurements reveals that the coverage-based metric allows maintaining
more test cases than the original metric overall when some of the operators
are discarded. In addition, the new metric exhibits even more ability to
retain specific test cases than the original one.

Scope: It is the goal of this paper:

– To define the coverage-based quality metric and to present how it operates.
– To evaluate whether the coverage-based metric outperforms the original

metric thanks to the addition of coverage information.

The remainder of this paper is structured as follows. While the next section
provides the motivation for the use of quality metrics and explanations on
how the original quality metric works, Section 3 reasons how the coverage
information can improve that metric and why a new selective strategy and
new measures are required. Section 4 is devoted to the coverage-based quality
metric and the new concepts related to coverage information. Section 5 shows
the setup of the conducted experiments, and Section 6 analyses in depth the
empirical results. Section 7, Section 8 and Section 9 address threats to validity,
final remarks and related work respectively. Finally, the main findings and
possible research lines for the future are shown in the last section.
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2 Quality Metrics

2.1 Motivation for the Use of Quality Metrics

Mutation testing: Because of the high cost that applying mutation testing
entails (mutant execution and analysis), the reduction of the expenses has be-
come a complementary goal when using this technique. In this context, the
definition of quality metrics to estimate the utility of mutation operators can
play an essential role: they can be used as a basis for restricting or excluding
the least effective operators and consequently reducing the testing effort. In
a recent work, Delgado-Pérez et al. (2017b) showed that considering a qual-
ity metric can be highly valuable for the application of selective mutation. In
general, the experiments reported significant savings in the number of mu-
tants (including equivalent ones) with a low loss in the number of test cases
with respect to a test suite that kills all non-equivalent mutants. The study
by Delgado-Pérez et al. (2017b) also supports the fact that any mutation oper-
ator can generate valuable mutants, as raised in previous works (Kurtz et al.,
2016). However, their experiments also show evidence that giving preference
to mutation operators over others (based on a ranking experimentally deter-
mined) is a better choice than selecting mutants from all operators with equal
probability. This fact supports the application of a cost reduction technique
following quality metrics.
Coverage analysis: Regarding the coverage-aware metric presented in this
paper, it is important to note that several mutation tools already analyse the
test suite coverage to reduce the cost (Schuler & Zeller, 2009; Papadakis &
Malevris, 2011), as it will be commented later on in Section 3.2. As a re-
sult, these tools do not generate or execute a mutant (or a mutant against
particular test cases) when the mutation is not covered by the test suite in
practice. However, this tool improvement does not serve the same purpose as
the coverage-quality metric proposed in this paper. Indeed, the coverage-based
metric is used in advance in order to know the best operators for test suite im-
provement. The information derived from that previous analysis is then used
in practice to produce a lower number of mutants. As such, while taking into
account the test suite coverage in practice can reduce the need for execution
(and barely the need for mutant analysis), the quality metric has the potential
to greatly reduce both mutant execution and mutant analysis.

2.2 Original Quality Metric

Recently, Estero-Botaro et al. (2015) provided a definition of quality for mu-
tants and operators with the goal of searching for specific test cases. Their
quality metric punishes the existence of equivalent mutants as well as takes
into account a twofold aspect: the number of test cases that kill a mutant and
the number of mutants that those concrete test cases kill in turn. Therefore,
this metric considers that a mutant will assist a tester in designing high-quality
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test cases not only when there are few test cases killing it, but also when there
are few mutants killed by those test cases. In other words, the fewer the mu-
tants that are able to guide the tester in creating a test case, the more specific
and hard to design is that test case. The metric by Estero-Botaro et al. (2015)
allows estimating the effectiveness of mutation operators and, as such, we base
the work that will be presented in the next sections on this metric. We will
refer to this metric as original quality metric.

Nevertheless, other metrics have been proposed following different ap-
proaches. The first evaluations of operator effectiveness aimed at obtaining
sufficient sets of mutation operators (i.e., subsets of operators that accurately
predict the adequacy of the whole set of operators) by removing both the most
prolific operators (Offutt et al., 1993) and those of the same category (Offutt
et al., 1996) (based on the syntactic elements that they mutate). If the mu-
tation score in the reduced set of operators is the same as in the original set
after the selective strategy, the effectiveness of the technique remains high and
those operators are not actually necessary.

Mresa & Bottaci (1999), in addition to calculating the mutation score of
Fortran operators, also used the cost of applying them (test data generation
and equivalent mutant identification) for a more accurate measurement of the
trade-off of including each operator. Estero-Botaro et al. (2010) analysed a set
of WS-BPEL operators with a focus on the quantitative dimension: number of
invalid, equivalent, easy to kill and resistant mutants generated. In their study,
they made use of the notion of quality that Derezińska (2006) took to assess C#
class operators, which computes how effective are test cases in killing mutants.
Smith & Williams (2009) went a step beyond when classifying mutants; they
categorised the mutants depending on the outcome during successive attempts
to kill them: the mutants killed by test cases specifically designed to detect
them are more interesting than those killed by the initial test suite. As for
object orientation, Hu et al. (2011) also proposed a metric, called mutation
operator strength, to estimate the quality of Java class operators as the minimal
number of tests needed to kill the set of non-equivalent mutants.

2.3 Execution Matrix

In order to calculate the quality metrics detailed in the next sections, each
mutant needs to be run against each of the test cases in the test suite to
produce a result. That result depends on the behaviour of the mutant when
compared with the original program. To that end, the mutation tool produces
as an output what Estero-Botaro et al. (2015) call execution matrix. As can
be seen in Figure 1, the rows in the execution matrix represent the mutants
and the columns represent the test cases. Thus, a value vx,y is the result of
the execution of the mutant x against the test case y. We identify a mutant
that is killed by a test case with the value 1, and 0 otherwise. We will show
an example of execution matrix to illustrate the quality metrics later on, as
we require its information to perform the calculations.
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test1 test2 ... testm
mutant1 v1,1 v1,2 ... v1,m
mutant2 v2,1 v2,2 ... v2,m

... ... ... ... ...
mutantn vn,1 vn,2 ... vn,m

Fig. 1 Matrix execution format

2.4 Nomenclature

The symbols used in the following sections to refer to terms related to mutation
testing are as follows:

– M - set of valid mutants.
– E - set of equivalent mutants.
– D - set of dead mutants.
– T - an adequate, non-redundant and minimal test suite for the set of mu-

tants D. A test suite is adequate when every non-equivalent mutant is
killed by some test cases, and non-redundant when every test case is nec-
essary to keep the adequacy. Additionally, an adequate and non-redundant
test suite is labelled as minimal when it contains the minimum number of
test cases keeping the adequacy for the full set of mutants (the definition of
minimum test suite provided by Ammann et al. (2014) represents the same
concept). We will refer simply to adequate and minimal test suites from
now on when a test suite satisfies all these properties. If T is an adequate
test suite for D, it is also adequate for M .

– Km - set of test cases killing the mutant m.
– Ct - set of mutants killed by the test case t.

Similarly, we can use analogous notation regarding an operator:

– Mo - set of valid mutants produced by the mutation operator o.
– Do - set of dead mutants within Mo.
– To - an adequate and minimal test suite for the set of mutants Do (again,

To is therefore adequate for Mo).

2.5 Definition of the Original Quality Metrics

Estero-Botaro et al. (2015) defined the notion of quality of a mutant as follows:

Qm(M,T ) =


0, m ∈ E

1− 1

(|M | − |E|) · |T |
∑

t∈Km

|Ct| , m ∈ D (1)

By way of explanation of the metric, an equivalent mutant (m ∈ E) will
be punished with the minimum value (0), whilst each dead mutant (m ∈ D)
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will be assigned a different value depending on how difficult is to produce test
cases to kill it (the higher the value, the better is that mutant).

The metric Qm provides the foundations for two further metrics regarding
an operator:

– Quality of a mutation operator:

Qo(Mo, To) =
1

|Mo|
∑

m∈Mo

Qm(Mo, To) (2)

Therefore, the quality of a mutation operator is based on the quality of
their mutants.

– Quality of the dead mutants generated by a mutation operator:

QDo(Do, To) =
1

|Do|
∑

m∈Do

Qm(Do, To) (3)

Notice that the metric Qm is dependent on the test suite (T ) and the set of
mutants (M ). The authors of this metric consider that T should be adequate
and minimal for the reliability of the results (see Section 2.4). As can be seen
from Equations 2 and 3, the metrics Qo and QDo

are computed using the set
of mutants from that operator (Mo and Do respectively). As such, these two
quality metrics regarding a mutation operator are completely independent of
the mutants generated by other operators. Thus, just considering the mutants
from that operator for the calculations ensures that the operator will always
show the same behaviour (with the same test suite) regardless of the rest of
operators.

As a simple example, consider the execution matrix (see Section 2.3) that
appears in Figure 21. This matrix is a fragment with the four mutants gener-
ated by one operator and an adequate and minimal test suite for those mutants
(formed by three test cases). Being:

– |M | = 4, |E| = 0, |T | = 3.
– Km1

= {test1}, Km2
= {test2, test3}, Km3

= {test3} and Km4
= {test2}.

– Ctest1 = {m1}, Ctest2 = {m2,m4} and Ctest3 = {m2,m3}.

then, the quality of these mutants is:

– Qm1 = 1− 1/((4− 0) · 3) = 0.92
– Qm2

= 1− 4/((4− 0) · 3) = 0.67
– Qm3

= 1− 2/((4− 0) · 3) = 0.83
– Qm4

= 1− 2/((4− 0) · 3) = 0.83

The mutant m1 is the most valued because it is only killed by one test
case (test1), which kills no other mutants. Contrarily, m2 is of lower quality
since it is killed by two test cases (test2 and test3), which in turn kill another

1 From now on, we will refer to mutant x as mx for the sake of simplicity.



Coverage-Based Quality Metric 9

Mutant test1 test2 test3

m1 1 0 0
m2 0 1 1
m3 0 0 1
m4 0 1 0

Fig. 2 Execution matrix to illustrate the original quality metric.

mutant (m4 and m3 respectively). m3 and m4 are valued the same (0.83) as
they both are killed by a single test case that kills another mutant.

Finally, knowing these values, we can measure the quality of the mutation
operator that produced those mutants as follows:

Qo = (0.92 + 0.67 + 0.83 + 0.83)/4 = 0.81

As a final remark, QDo = Qo = 0.81 because there are no equivalent
mutants (Mo = Do).

2.6 Mutant Categorisation

Also with regard to the quality of mutants, Estero-Botaro et al. (2010) defined
different terms to categorise mutants which make use of the information in the
execution matrix:

– Trivial mutants are killed by every test case in the test suite. They
can be identified as a row filled with the value 1. Note that the original
term for this kind of mutants is weak mutant, but we use trivial instead
(following Just & Schweiggert (2015)) to distinguish trivial mutants from
weak mutation (Papadakis & Malevris, 2011).

– Resistant mutants are killed by a single test case. They can be identified
as a row filled with the value 0 except for one entry with the value 1. The
set of resistant mutants is denoted by R.

– Resistant hard to kill mutants are killed by a single test case that kills
no other mutants. They can be identified as a row filled with the value 0
except for one entry y with the value 1. At the same time, the rest of the
entries in the column y are filled with the value 0. The set of resistant hard
to kill mutants is denoted by H.

While trivial mutants model faults that are easy to detect, resistant and
resistant hard to kill mutants simulate non-trivial situations. Thus, trivial and
resistant mutants represent respectively the worst and the best-valued mutants
by the original quality metric. The rest of the mutants lie within that range
and receive a mark according to the number of test cases and mutants killed by
those test cases. The mutants m3 and m4 (see Figure 2) are resistant mutants,
and the mutant m1 is a resistant hard to kill mutant. Note that we cannot
find a trivial and a resistant hard to kill mutant simultaneously in the same
execution matrix.
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3 New Approach to Estimate the Quality of Mutation Operators

3.1 Motivation for the Improvement of the Original Quality Metric

As aforementioned, the original quality metric Qm is dependent on the test
suite used (T ), which should be adequate and minimal. This metric is also
dependent on the number of mutants generated (M). Thus, the same size of
the test suite (|T |) and the set of mutants (|M |) is used to calculate Qm for
every mutant (see Equation 1).

However, this can lead to a deviation in the results which is related with
the next statement made by their authors (Estero-Botaro et al., 2015): “Please
notice that a resistant mutant can also be trivial in the degenerate case that
|T | = 1”. In the same sense, a mutation will be reached by some test cases
while it will not be exercised by others. Thus, being the number of test cases
greater than one, in the most extreme case a resistant mutant might only be
reached by the test case that kills it; in that instance, the size of the test suite
with respect to that mutant is actually one. This is even more relevant when
testing object-oriented systems, where test cases are designed as scenarios,
each one of them exercising different methods belonging to different classes.
Thus, a test scenario usually addresses a class or subset of classes, while it
does not cover the rest of classes.

According to this, a mutant executed by many test cases but killed
by few of them is regarded as more difficult to kill (and should be
more valued) than other mutants killed by most of the test cases
covering the mutation. That is, knowing which mutants are often covered
but rarely killed may result in valuable information for the evaluation of mu-
tation operators. Consequently, the fact that not all the test cases reach all
the mutants leads us towards a new approach for a finer-grained measurement
of the quality of a mutant. In order to estimate the quality of a particular mu-
tant, a quality metric using the coverage information of the test suite should
only consider the set of test cases reaching the mutant as well as the set of
mutants reached by those test cases at the same time (instead of the size of
the whole test suite and the size of the whole set of mutants, as the original
quality metric does).

3.2 Use of Coverage Information

To optimise the mutant generation or execution stages, some mutation tools
harness the coverage information of the test suite. Coverage information is
used to avoid the injection of mutations when they are not executed by any
of the test cases. Likewise, avoiding the execution of test cases against several
mutants is also possible by analysing the coverage information. At this point,
it is important to note that this tool improvement is not incompatible with
the use of the quality metric with coverage information. The coverage-based
metric is used in advance, increasing the knowledge about the most valuable
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operators for test suite improvement. The generation of mutants from those
best-valued operators can be later favoured in the mutation tool. Finally, the
mutation tool in practice could avoid the generation/execution of uncovered
mutants from the subset of mutants generated to further reduce the cost.

CREAM for the C# programming language (Derezińska & Szustek, 2012)
integrates the IBM Rational PureCoverage tool to obtain coverage data and
be able to automatically detect mutations covered by none of the test cases,
thus avoiding the need to inspect them when classifying mutants as equivalent
or not. Javalanche (Schuler & Zeller, 2009) collects which statements of the
Java code are covered by each test case, thereby only executing the test cases
that reach each mutant. PROTEUM/IM (Vincenzi et al., 2006) instruments
the original code by using a descriptor language that assists in storing the
nodes of the program graph reached by each test case, thus speeding up the
mutant execution later. MutPy for Python (Derezinska & Halas, 2014) also
implements a coverage analysis to reduce mutants generated and test cases
executed. Bacterio (Mateo & Usaola, 2012) uses the mutant schemata tech-
nique (Untch et al., 1993) in order to reduce compilation times. This tool
includes another technique, called MUSIC, that reduces mutant execution by
adding extra code to the mutant schemata, and that avoids infinite loops at
the same time.

Unlike those tools, which only analyse the coverage of the statements, Pa-
padakis & Malevris (2011) used dynamic symbolic evaluations to implement
weak mutation and obtain a more accurate mechanism to reduce test case
executions. To this end, a control flow graph containing the full set of mutants
and the infection conditions is generated. The execution of test cases can be
later filtered not only when they do not cover a mutant, but also when it is
known that the system is not infected.

Inozemtseva & Holmes (2014) recently leveraged the coverage information
in a very different way from the above mentioned works. They devised a metric
called normalized effectiveness measurement, which is similar to the mutation
adequacy score, but using the number of non-equivalent mutants covered by
the test suite instead of the whole set of non-equivalent mutants. The metric
helped them to produce evidence that the test suite effectiveness is not strongly
correlated with coverage criteria. We will make use of this approach in our work
to strengthen the original quality metric explained in the previous section.

3.3 Test-Quality Selective Mutation

Selective mutation is a technique based on the omission of some of the oper-
ators in the set to reduce the cost while retaining effectiveness. The goal in
selective mutation is to find a reduced set of operators which is representative
of the full set of operators. That representativeness is calculated through the
test suite obtained by means of the subset of operators selected; we obtain a
sufficient set of operators if the mutation score of that test suite when mea-
sured against the original set of operators correlates with the mutation score
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associated with the reduced set of operators. This is the approach to selective
mutation when it comes to evaluating the fault detection capability of the test
suite. However, as aforementioned, the presented quality metric focuses on test
suite improvement with high-quality test cases. Therefore, it is not the purpose
of the quality metric to value operators for their potential to predict the muta-
tion score of the full set of operators. This was pointed out by Delgado-Pérez
et al. (2017b), who proposed to assess operators in a different way depending
on whether the test suite is being evaluated or refined.

As a consequence, we should not apply selective mutation and compute
the mutation score (as traditionally done) to evaluate the effectiveness of the
quality metric. We can illustrate with a simple example why a new approach
related to test quality is required. Consider again the executing matrix in
Figure 2. If we had to select only one mutant based on the quality metric, we
would select the mutant m1 because it is a resistant hard to kill mutant (see
Section 2.5). Therefore, test1 does not kill any other mutants, so the mutation
score is low but we are retaining a test case which is not easy to design. As
it can be seen, the mutation score is not an appropriate method to measure
the effectiveness when using this quality metric. In our approach, whether the
test suite kills a large number of mutants is unimportant as we just seek a set
of operators which is effective in the refinement of the test suite with specific
test cases.

Instead of traditional selective mutation, we propose a test-quality selective
mutation with appropriate metrics to measure the quality of the test suite. By
applying test-quality selective mutation we do not seek for a representative
subset of operators, but for a subset that allows us to leverage the information
of surviving mutants in such a way that the test suite is enhanced with as
many high-quality test cases as possible. We define the following metrics to
compute its effectiveness:

1. Test suite size: Percentage of test cases loss when compared to the orig-
inal adequate and minimal test suite. Being n a number to represent the
n best-valued operators selected by the quality metric (represented by
o1...on), it is measured as follows:

|T | − |To1...on |
|T |

× 100

The lower the percentage, the fewer test cases we are losing because of
removing the rest of operators which are not in {o1...on}. Going back to
the same example, test1 is the only test case (out of three test cases) that
the selected mutant m1 would be able to induce. Therefore, the percentage
of test cases loss with respect to the adequate and minimal test suite would
be (3 − 1/3) × 100 = 66.6%. If we had selected m4, the loss would be the
same, as this mutant can also lead to the design of just one test case (test2).

2. Test suite specificity: Average percentage of mutants killed by the test
cases in the test suite. Again, being o1...on the n best-valued operators
selected by the quality metric, it is measured as follows:



Coverage-Based Quality Metric 13∑
t∈To1...on

(|Ct|/ |M |)× 100

|To1...on |

The lower the percentage, the more specific are the test cases in the test
suite formed with the operators o1...on, as those test cases may only be
generated by inspecting few of the mutants in the full set. In our example,
the test suite size was the same selecting either m1 or m4. However, test1
is a more specific test case than test2. This is reflected by the test suite
specificity: test1 and test2 kill ((1/4)×100/1) = 25% and ((2/4)×100/1) =
50% of the mutants respectively.

In general, the best situation is to retain all those mutants that can lead
to the design of a mutant-adequate test suite (therefore, the test suite loss is
0%). Otherwise, the loss of some test cases is not so problematic if that affects
the specificity positively (i.e., the average percentage of mutants killed by the
test cases decreases); that means that the generated mutants can still lead to
the design of the high-quality test cases, which is the goal of using the quality
metric in this paper.

Test-quality selective mutation removing complete mutation operators from
the execution (operator-based selection) is used in the experiments in this pa-
per in Section 5. Recent studies suggest that mutant-based selection can be
a better choice than operator-based selection (Zhang et al., 2010; Gopinath
et al., 2015). On the basis of this idea, a rank-based strategy was recently
proposed (Delgado-Pérez et al., 2017b), in which the probability of selecting
mutants from an operator is proportional to its position in the operator rank-
ing (formed with the values that the quality metric gives to each operator).
However, we apply operator-based selection in these experiments to avoid the
stochastic factor of the rank-based strategy, which should help to observe more
precisely the actual difference between the original and the proposed coverage-
based metric.

4 Coverage-Based Quality Metric of a Mutation Operator

4.1 Previous Definitions

Before presenting the new quality metric, we need to clarify the meaning of
coverage of the test cases with respect to the mutants. For this purpose, we
define several concepts connecting mutants and coverage of the test suite as
follows:

Definition 1 (Reaching a mutant) Let reaches be the binary relation such
that t reaches mutant m iff the mutated statement in m is executed by test
case t.
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Note that, for a mutant m to be killed by test case t, t must reach m.

Definition 2 (Mutants reached by test case t) Let Mt be the set of
mutants reached by test case t:

Mt = {m ∈M | t reaches m} (4)

Therefore, Mt ⊆M .

Definition 3 (Equivalent mutants reached by test case t) Let Et be
the set of equivalent mutants reached by test case t:

Et = {m ∈ E | t reaches m} (5)

Therefore, Et ⊆ E.

Definition 4 (Non-equivalent mutants reached by test case t) Let Nt

be the set of non-equivalent mutants reached by test case t:

Nt = {m ∈Mt \ Et} (6)

Therefore, Nt ⊆M \ E.

Definition 5 (Test cases reaching mutant m) Let Tm be the set of test
cases reaching mutant m:

Tm = {t ∈ T | t reaches m} (7)

Therefore, Tm ⊆ T .

Definition 6 (Coverage matrix) A coverage matrix of size |M | × |T | de-
scribes which mutants are reached by which test cases.

A coverage matrix presents the same format as the execution matrix shown
in Figure 1. In this case, a value vx,y reflects whether the mutant x was reached
by the test case y; a symbol ‘x’ will be marked in the coverage matrix to register
which test cases reach each mutant.
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4.2 Example of Execution Matrix and Coverage Matrix

Consider the execution matrix EM (see Figure 3) with the results of running a
set of eight mutants against a test suite with five test cases, which is adequate
and minimal (therefore, m8 is an equivalent mutant). As can be seen, m4 and
m7 are resistant mutants since they are only killed by the test case test5 and
test1 respectively. In both mutants, the test case killing them also kills another
mutant (test1 kills m1 and test5 kills m2), so the original metric will give both
mutants the same value (see the same case in the example in Section 2.5 with
m3 and m4).

Now consider a coverage matrix CM (see Figure 4) of the same size than
EM (8×5). In the matrix CM , the test cases reaching each mutant are marked
with ‘x’, as explained in the definition of coverage matrix (see Definition 6).
This matrix shows that m4 might only be killed by two test cases (test1 and
test5), while m7 might be killed by four test cases in the test suite (test1, test2,
test3 and test5). Therefore, m7 seems to be more valuable than m4 because it
appears to be harder to kill.

Mutant test1 test2 test3 test4 test5

m1 1 0 1 0 0
m2 0 0 1 0 1
m3 0 0 1 0 0
m4 0 0 0 0 1
m5 0 0 0 1 0
m6 0 1 0 0 0
m7 1 0 0 0 0
m8 0 0 0 0 0

Fig. 3 Execution matrix EM .

Mutant test1 test2 test3 test4 test5

m1 x - x x -
m2 - - x - x
m3 - x x - -
m4 x - - - x
m5 - - - x -
m6 x x x x x
m7 x x x - x
m8 - - x - x

Fig. 4 Coverage matrix CM .

An analogous approach can be taken regarding the mutants reached by
each test case for a finer measurement. Following the double perspective of
the original metric (see Section 2.2), we are also interested in finding mutants
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which induce the creation of test cases that might only be designed by re-
viewing few mutants. Therefore, the fact that a test case kills only few of the
mutants reached by that test case is a valuable information for the new quality
metric. As an example, test4 reaches three mutants (m1, m5 and m6), but it
is only able to kill m5.

4.3 Coverage-Based Mutant Categorisation

In this section, we will redefine the terms resistant and resistant hard to kill
mutant provided by Estero-Botaro et al. (see Section 2.6) according to the
particularities of the new metric considering the coverage of the test suite.
The definition of these concepts is important as they delimit the values that
the coverage-aware metric can assign to mutants. It should be clarified that we
do not define an analogous concept “coverage-based trivial mutant” because
it would be equivalent to “trivial mutant”.

Definition 7 (Coverage-based resistant mutant) A mutant m is resis-
tant considering the coverage of the test suite when the mutant is reached by
all the test cases in the test suite, but only one test case kills it. Let RC be
the set of coverage-based resistant mutants:

RC = {m ∈M | |Km| = 1 ∧ Tm = T} (8)

Therefore, it is clear that RC ⊆ R (recall that R is the set of resistant
mutants, as mentioned in Section 2.6). A mutant belonging to RC is more
difficult to kill than a mutant belonging to R \RC.

Definition 8 (Coverage-based resistant hard to kill mutant) A mutant
m is resistant hard to kill considering the coverage of the test suite when the
mutant is reached by all the test cases in the test suite, and it is killed by only
one test case that reaches the rest of the mutants but kills none of them. Let
HC be the set of coverage-based resistant hard to kill mutants:

HC = {m ∈ RC | ∀t ∈ Km |Ct| = 1 ∧Nt = M \ E} (9)

Therefore, it is clear that HC ⊆ H (recall that H is the set of resistant
hard to kill mutants). A mutant belonging to HC is more difficult to kill than
a mutant belonging to H \HC.

We can also define a new type of mutant, difficult to reach mutant, which
will play an important role in the new metric. Going back to the matrix CM in
the previous section, since m5 is only reached by one test case (test4), we may
deem that this mutant is not easy to cover. These mutants that are difficult to
reach normally affect fragments of code barely tested or used within the code
of the program. Note that, while coverage-based resistant mutants are easy to
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reach but difficult to kill, we do not know whether difficult to reach mutants
are easy or difficult to kill. In other words, we have no certainty about whether
or not new test cases reaching a difficult to reach mutant would be able to kill
it. Because of the lack of coverage information, we should not use the coverage
of these mutants to value their quality. Thus, we define the term of difficult
to reach mutant in order to include a special case for this kind of mutants in
the definition of the coverage-based quality metric of mutation operators, as
we will see later on in this paper.

As a remark before providing the definition of difficult to reach mutants,
we might consider the number of test cases reaching a mutant (|Tm|) as the
only coverage information that is meaningful to determine whether a mutant is
difficult to reach or not. However, for the sake of consistency with the twofold
approach of the metric, the number of non-equivalent mutants reached by each
test case (|Nt|) is also regarded as part of the coverage information related to
a mutant. Returning to the example, we not only consider that m5 is reached
by test4, but also that this test case reaches m1, m5 and m6.

Definition 9 (Difficult to reach mutant) Let MCOV be a constant rep-
resenting the minimum number of coverage data required so that the coverage
is regarded as significant. A dead mutant m is difficult to reach when the sum
of the test cases reaching m and the non-equivalent mutants reached by those
test cases is less or equal than MCOV. Let DR be the set of difficult to reach
mutants:

DR = {m ∈ D |
∑
t∈Tm

|Nt| ≤MCOV } (10)

Note that we limit this definition to dead mutants because whether equiv-
alent mutants are difficult to reach or not is uninteresting. Finally, we should
note that, as Tm ⊆ T , in the degenerate case that

∑
t∈T |Nt| ≤ MCOV , all

the mutants in D will also be classified as difficult to reach.

4.4 Coverage-Based Quality Metric

Bearing in mind the definitions and explanations about coverage in the previ-
ous sections, we can now provide a definition for a new quality metric consid-
ering the coverage of the test suite:

Definition 10 (Coverage-based quality metric of a mutant)

QCm(M,T ) =



0, m ∈ E

1− 1∑
t∈Tm

|Nt|

∑
t∈Km

|Ct| , m ∈ D \DR

1− 1∑
t∈T

|Nt|

∑
t∈Km

|Ct| , m ∈ DR

(11)
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Note that the only difference between m ∈ D\DR and m ∈ DR is that the
former case uses Tm and the latter uses T . That is, difficult to reach mutants
are valued with respect to the test suite without considering the coverage, in
line with the explanations previously provided.

This formal definition of coverage-based quality of a mutant contemplates
three different cases:

- Case m ∈ E (equivalent mutants):

Equivalent mutants are equally penalised with a 0.

- Case m ∈ D \ DR (dead mutants not considered as difficult to
reach):

This metric meets the following conditions:

1. Km ⊆ Tm and Ct ⊆ Nt. This means that, whenever there is a value 1 in
the execution matrix, there should be a value ‘x’ in the coverage matrix.

2. Subsequent to the preceding point,
∑

t∈Km
|Ct| /

∑
t∈Tm

|Nt| ≤ 1. This
implies that QCm ≥ 0, exactly as the original quality metric of a mutant
(Qm).

3. Let Tm = T , that is, when the row corresponding to mutant m is filled
with ‘x’ in the coverage matrix. Also let |Nt| = |M | − |E|, that is, when
the mutants in M \ E are marked with ‘x’ in the column corresponding to
test case t in the coverage matrix. Then, QCm = Qm.

This last point shows the conditions under which the original and the
coverage-based quality metric assign the same value to a mutant m ∈ D \DR.

- Case m ∈ DR (difficult to reach mutants):

In the case of difficult to reach mutants, even when we do not know whether
a difficult to reach mutant is difficult to kill as well (see Section 4.3), we seek
to maintain this mutant as it might provide a necessary test case. Indeed,
when |Tm| = 1, a difficult to reach mutant is considered to be resistant by the
original definition by Estero-Botaro et al. (see resistant mutant in Section 2.6);
resistant mutants receive a high mark by the original metric. Therefore, the
coverage-based metric has been devised to assign the same value to difficult
to reach mutants and coverage-based resistant mutants as they are equally
useful to refine a test suite: Tm = T in the latter kind of mutant, so the cases
m ∈ D\DR and m ∈ DR in Equation 11 turn out to be equal in this instance.

We have to note that, while this metric favours coverage-based resistant
mutants (see Definition 7) and difficult to reach mutants (see Definition 9),
coverage-based resistant hard to kill mutants receive the highest value (see
Definition 8).

At this point, we can define the new metrics for a mutation operator de-
rived from QCm, analogously to the metrics defined from Qm (see Section 2.5):
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Definition 11 (Coverage-based quality of a mutation operator)

QCo(Mo, To) =
1

|Mo|
∑

m∈Mo

QCm(Mo, To) (12)

Definition 12 (Coverage-based quality of the dead mutants
generated by a mutation operator

)

QCDo
(Do, To) =

1

|Do|
∑

m∈Do

QCm(Do, To) (13)

QCO and QCDO
are similar to QO and QDO

respectively, but replacing
Qm with QCm in their formal definition. Please notice that the minimisation
of the test suite is a desirable property for the reliability of the results when
computing these metrics, as we will discuss later in the paper.

As an example of the coverage-based quality metric, consider the mutant
m4 from the matrices EM and CM (see Section 4.2), where |M | = 8, |E| = 1,
|T | = 5. We need to obtain the following values to calculate QCm4 :

– Tm4
= {test1, test5} (test cases reaching m4).

– |Mtest1 | = 4 (mutants reached by test1).
– |Mtest5 | = 5 (mutants reached by test5).
– |Etest1 | = 0 (equivalent mutants reached by test1).
– |Etest5 | = 1 (m8 is an equivalent mutant).
– |Ntest1 | = |Mtest1 | − |Etest1 | = 4− 0 = 4.
– |Ntest5 | = |Mtest5 | − |Etest5 | = 5− 1 = 4.
– Km4

= {test5} (test cases killing m4).
– |Ctest5 | = 2 (mutants killed by test5).

Supposing that MCOV = 4 (see Definition 9), then m4 ∈ D \ DR, and
Qm4

is calculated as follows:

QCm4 = 1− 2/(4 + 4) = 0.75

Table 1 Qm and QCm calculations for matrix EM (Figure 3) and matrix CM (Figure 4)

m1 m2 m3 m4 m5 m6 m7 m8

Q 0.86 0.86 0.91 0.94 0.97 0.97 0.94 0.00
QC 0.58 0.44 0.62 0.75 0.95 0.95 0.88 0.00

As an illustration of the difference between Qm and QCm, these metrics
have been calculated with respect to the matrices in Figure 3 and 4. The values
of both metrics are presented in Table 1. This table shows that m4 and m7

are equally valued by the original metric (Qm4
= Qm7

= 0.94), as commented
in the previous section. On the contrary, as expected, QCm indicates that m7

is of a higher quality than m4 (QCm7 > QCm4).
We can also observe that:
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– m5 is a difficult to reach mutant, as it is only reached by test4, which in turn
only reaches three other non-equivalent mutants (Ntest4 = {m1,m5,m6}).

– m6 is a coverage-based resistant mutant, as it is reached by all the test
cases, but it is only killed by test2.

Recall that m5 and m6 are equally valuable for the refinement of the test
suite, so they receive the same mark by QCm (QCm5 = QCm6 = 0.95).

5 Empirical Evaluation

5.1 Research Questions

As mentioned in the introduction, the aim of this evaluation is to assess the
performance of the coverage-based quality metric in comparison with the orig-
inal metric. The application of the coverage-aware metric to C++ class-based
operators serves this particular purpose. Therefore, we aim to answer the fol-
lowing research questions:

– RQ1: How does the coverage information alter the quality as-
signed to each mutation operator? We intend to know the value that
the metric assigns to each operator taking into account the coverage of the
test suite, and observe the differences with the original metric. Then, it
will be interesting to study the distribution of mutants in relation to the
value attached to each operator, including difficult to reach mutants as it
is currently unknown the impact of these mutants on the quality assigned
to mutation operators.

– RQ2: Does the coverage-based quality metric outperform the
original quality metric in terms of test suite size? We aim to apply
test-quality selective mutation through the operator classification obtained
with both the original and the coverage-based metric, and then to study
if the new metric allows us to reduce the test cases that would be lost
when some of the operators are excluded in comparison with its original
counterpart.

– RQ3: Does the coverage-based metric allow operators to be dis-
carded without losing high-quality test cases when compared to
the original metric? Applying the same selective strategy as in the pre-
vious question, it will be interesting to analyse the specificity of the test
cases contained in the test suite. When some of the operators are removed,
this evaluation will complement the study by reporting whether we are los-
ing test cases killing few or many mutants. A suitable metric should favour
those mutants leading to the design of specific test cases which might only
be created through the examination of few mutants.
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5.2 Class Mutation Operators for C++

Class-based operators for this important industrial-strength programming lan-
guage were recently defined by Delgado-Pérez et al. (2015). The set of class
operators for C++ encompassed both adapted operators for Java (Ma et al.,
2002)/C# (Derezińska, 2006) and tailored operators to C++ features. A re-
vised list of these operators has been implemented in the mutation tool called
MuCPP2, where they underwent a thorough study to increase the ratio of
useful mutants generated (Delgado-Pérez et al., 2017a). This set of C++ class
operators, which was previously assessed following a selective mutation ap-
proach (Delgado-Pérez et al., 2017b), will be analysed in the conducted exper-
iments in the next section.

5.3 Case Studies and Test Suites

We carried out the experimental procedures explained in the next sections on
a set of C++ open-source programs, namely3:

– Matrix TCL Pro (Tcl) (Matrix TCL Pro, 2017): a library to perform ma-
trix algebra calculations (LOC: 3,228; |T | = 24).

– XmlRpc++ (Rpc) (XmlRPC, 2017): a library that implements the XML-
RPC protocol to incorporate client-server communication through HTTP
support into other C++ programs (LOC: 2,194; |T | = 34).

– Dolphin (Dph) (Dolphin, 2017): the default navigational file manager in
KDE desktop applications (LOC: 3,667; |T | = 70).

– Tinyxml2 (Txm) (Tinyxml2, 2017): a lightweight and efficient XML parser
that can be integrated into C++ applications (LOC: 2,620; |T | = 62).

– KMyMoney (Kmy) (KMyMoney, 2017): a KDE desktop application for
personal finance management (LOC: 13,709; |T | = 247).

– QtDom (Dom) (QtDOM, 2017): a module of the known Qt framework
that provides a C++ implementation of the DOM standard (LOC: 2,117;
|T | = 56).

Taking into account that adequate test suites are required to calculate
the quality metric, these programs were selected for being accompanied by
non-trivial test suites. Thus, starting from the test suite distributed with the
aforementioned programs, we manually extended the test suite with new test
cases to kill surviving mutants until reaching an adequate test suite for each
of these SUTs (the final size of the test suite is shown above along with each
case study). We could not however classify some of the mutants as equivalent
because we were unable to ascertain this condition with high confidence. For
those mutants, we used the term undecided (Segura et al., 2011) to avoid
skewing of results when computing the metrics.

2 https://ucase.uca.es/mucpp
3 Further details about the programs under study can be found in the paper by Delgado-

Pérez et al. (2017b).

https://ucase.uca.es/mucpp
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Tables 2-7 show, per each SUT and mutation operator, the total number of
mutants generated and their classification into dead, equivalent and undecided.

To achieve the minimality of the test suite in our experiments, we used the
same exact algorithm applied by Estero-Botaro et al. (2015) in their study. In
this regard, we have to note that the minimisation of the test suite is performed
using the execution matrix. Still, the same columns that disappear from the
execution matrix when minimising the test suite have to be removed from the
coverage matrix as well.

5.4 Coverage Information

The data required for the calculation of the coverage-based metric was col-
lected as follows:

1. Each test case was independently run against the original program. In
these executions, we used the application gcov4 to get a report of the lines
reached by each test case.

2. We instrumented the mutation tool MuCPP to retrieve the lines where the
mutations were injected, reusing the Clang libraries to this end.

3. Finally, we obtained the coverage matrix by automatically matching the
lines of the code mutated with the lines reached by each test case.

We can broadly classify the mutation operators with regard to the coverage
depending on the mutated element:

– Statement: When the mutation only affects a concrete statement, we
simply retrieve the line containing the statement.

– Block: Several operators mutate a block of code that comprises various
lines of code, such as the deletion of a method or an exception handler. In
these cases, we use the first line of the block as a reference to know whether
a test case reaches the mutant.

– Structure of a declaration: When the mutated element changes the
structure of a declaration, the coverage information has to be obtained as a
combination of the different lines where the declared element is referenced.
Therefore, a test case executing at least one of the collected lines reaches
the mutant.

We also developed a checker that verifies the concordance of the data in-
cluded in the execution and the coverage matrix. As mentioned in Section 4.4,
we need to check that, whenever a mutant is killed by a test case, that mutant
has been reached.

5.5 Experimental Setup

We first calculated both the original and the coverage-based quality metric in
the case studies listed in Section 5.3. The authors of the original quality metric

4 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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Table 2 Classification of Mutants in TCLPro

Operator Total Dead Equivalent Undecided

OMD 46 38 8 0
OMR 34 33 1 0
MCO 3 3 0 0
CID 40 38 2 0
CDD 2 0 2 0
CCA 10 3 7 0

Total 135 115 20 0

Table 3 Classification of Mutants in XmlRpc++

Operator Total Dead Equivalent Undecided

IHI 4 2 2 0
ISD 1 1 0 0
ISI 3 2 1 0
IOD 3 1 2 0
IOR 15 0 15 0
IPC 1 1 0 0
PCI 3 2 1 0
PPD 1 0 1 0
OMD 10 9 1 0
OMR 10 10 0 0
MCO 48 38 10 0
EHC 2 1 1 0
CID 17 14 3 0
CDC 2 2 0 0
CDD 5 2 3 0
CCA 2 2 0 0

Total 127 87 40 0

Table 4 Classification of Mutants in Dolphin

Operator Total Dead Equivalent Undecided

ISI 11 9 2 0
IOD 18 15 3 0
IOR 30 3 27 0
IPC 5 2 3 0
OMD 3 2 1 0
OMR 6 5 1 0
MCO 85 68 7 10
CTI 2 2 0 0
CID 41 23 18 0
CDD 2 0 2 0
CCA 5 0 5 0

Total 208 129 69 10
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Table 5 Classification of Mutants in Tinyxml2

Operator Total Dead Equivalent Undecided

IHI 47 41 6 0
IOD 25 24 1 0
IOP 8 8 0 0
IOR 11 10 1 0
PCI 190 138 20 32
PMD 3 0 3 0
PPD 7 5 2 0
OMD 37 23 14 0
MCO 19 18 1 0
MCI 39 13 26 0
CID 34 24 10 0
CDC 3 3 0 0
CDD 6 3 3 0
CCA 4 0 4 0

Total 433 310 91 32

Table 6 Classification of Mutants in KMyMoney

Operator Total Dead Equivalent Undecided

IHD 1 1 0 0
IHI 23 8 15 0
ISI 3 0 3 0
IOD 1 1 0 0
IPC 18 12 6 0
PCI 15 14 1 0
PMD 1 0 1 0
PPD 18 4 14 0
OMD 13 9 4 0
OMR 32 32 0 0
OAN 7 3 4 0
MCO 87 76 7 4
EHC 6 1 5 0
CID 48 26 22 0
CDC 5 4 1 0
CDD 4 2 2 0
CCA 2 0 2 0

Total 284 193 87 4

established a threshold of four mutants as the minimum number of mutants
that a mutation operator should generate so that the value of the metric was
significant. We complied with this restriction in both metrics for consistency
with the experiments performed in that paper.

As for difficult to reach mutants, we carried out a sensitivity analysis with
our SUTs to set the value of MCOV (see Definition 9). We calculated the
coverage-based quality metric of each mutation operator applicable to each
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Table 7 Classification of Mutants in QtDom

Operator Total Dead Equivalent Undecided

IHI 46 21 25 0
ISI 2 1 1 0
IOD 32 28 2 2
IOP 2 0 2 0
IOR 1 0 1 0
IPC 8 8 0 0
PCI 451 293 155 3
PMD 4 0 4 0
PPD 16 2 12 2
PNC 2 2 0 0
OMD 22 16 6 0
OMR 16 16 0 0
MCO 43 36 7 0
CTD 1 1 0 0
CTI 1 1 0 0
CID 16 6 9 1
CDD 4 0 4 0
CCA 14 4 8 2

Total 681 435 236 10

program using different thresholds for MCOV (from 2 to 6)5. After study-
ing the results, we concluded that the value MCOV = 4 is an appropriate
threshold to avoid overfitting the results to these programs.

Once we had the values for each case study and operator, we compared the
results of the original and the coverage-based metric by applying a selective
process based on the values of each metric. Recall that we calculate the test
suite specificity in addition to its size so that, in case of losing some test cases,
we can determine whether those test cases are or not high-quality test cases
(see Section 3.3 for further details). To that end, we followed the below steps
for each metric and case study:

1. Calculate an adequate and minimal test suite for the whole set of operators.
2. Sort the mutation operators that could be graded with the metric. The

operator with the highest mark is placed at the top of the classification.
3. Apply test-quality selective mutation:

(a) Remove the operator at the bottom of the classification.
(b) Compute an adequate and minimal test suite for the remaining opera-

tors.
(c) Calculate (see details of these measurements in Section 3.3):

– Size: Percentage of test cases loss when compared to the original
adequate and minimal test suite obtained in step 1. Recall, as we
focus on the improvement of the test suite and not in its mutant
adequacy, we compute the percentage of test cases loss instead of
the mutation score.

5 The results of this analysis can be found in:
https://neptuno.uca.es/redmine/projects/coverage-based-quality-metric/wiki

https://neptuno.uca.es/redmine/projects/coverage-based-quality-metric/wiki
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– Specificity: Average percentage of mutants killed by the test cases.
4. Repeat step 3 as many times as operators there are in the classification

(except for the operator in the top).

Finally, we compared the results between using Qo and QCo with the same
number of operators.

As a final point, it is worth mentioning the strategy to handle with draws
among operators in step 2. In order of priority:

1. Using the sort of operators that provides the best result in terms of lost
test cases.

2. Sorting operators by the number of mutants generated, where the most
prolific is placed at the bottom.

3. Otherwise, operators are sorted in the same order as they are shown in
Tables 2-7.

6 Assessing the Performance of the Coverage-Based Quality Metric

6.1 Analysis of the Quality Metric Values

Table 8 presents the value of the original quality metric of each operator (Qo)
in the analysed SUTs6. As mentioned in Section 5.5, the metric is not measured
for those operators generating fewer than four mutants in a case study. We have
represented these cases with the symbol ‘-’ in this table. Analogously, Table 9
collects the values of the coverage-based quality metric (QCo) in each operator
and case study. As we calculate this metric under the same conditions as the
original metric, we obtain a value for the same operators in each program.

When comparing the results of the coverage-based metric (Table 9) with
the ones obtained by the original metric (Table 8), we can observe a general
reduction in the values. This reduction is however the expected outcome since
the denominator in the formula of QCm (Equation 11) is greater or equal
than the one to compute Qm (Equation 1). That is, the coverage-based metric
does not use the size of the execution matrix for the calculations, but only
the number of ‘x’ in the coverage matrix, which diminishes the values of the
metric.

We can observe that some operators like IOD, OMD and OMR usually
obtain good marks in both metrics. On the contrary, some operators like PPD,
CDD or CCA are not well valued by these metrics. However, there are also
notable differences between the value assigned by both metrics. For instance,
the operator IPC, which is the third best-valued operator following the original
metric in Dom, falls to the sixth position according to the coverage-based
metric. As such, while the operator ranking based on these metrics is similar

6 Some of the values presented in this table slightly differ from the results in the previous
work by Delgado-Pérez et al. (2017b) because of some changes in the test suites used.
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Table 8 Value of the Quality Metric of the Mutation Operators (Qo) in each Case Study

Oper. Tcl Rpc Dph Txm Kmy Dom

IHI 0 0.73 0.29 0.39
ISI - 0.57 - -
IOD - 0.80 0.78 - 0.89
IOP 0 -
IOR 0 0.07 0.65 -
IPC - 0.30 0.65 0.79
PCI - 0.71 0 0.60
PMD - - 0
PPD - 0 0.17 0.11
OMD 0.80 0.82 - 0.57 0.68 0.71
OMR 0.88 0.92 0 0.98 0.89
OAN 0.31
MCO - 0.74 0.79 0.72 0.89 0.73
MCI 0.30
EHC - 0
CID 0.83 0.74 0.52 0.55 0.52 0.29
CDC - - 0.47
CDD - 0.30 - 0 0 0
CCA 0.17 - 0 0 - 0.25

Table 9 Value of the Coverage-Based Quality Metric of the Mutation Operators (QCo) in
each Case Study

Oper. Tcl Rpc Dph Txm Kmy Dom

IHI 0 0.58 0.28 0.34
ISI - 0.51 - -
IOD - 0.68 0.31 - 0.49
IOP 0 -
IOR 0 0.07 0.21 -
IPC - 0.20 0.58 0.29
PCI - 0.25 0 0.26
PMD - - 0
PPD - 0 0.11 0.07
OMD 0.17 0.35 - 0.05 0.58 0.35
OMR 0.08 0.43 0 0.61 0.38
OAN 0.19
MCO - 0.46 0.78 0.09 0.05 0.54
MCI 0.20
EHC - 0
CID 0.11 0.38 0.26 0.53 0.46 0.18
CDC - - 0.28
CDD - 0.30 - 0 0 0
CCA 0.14 - 0 0 - 0.17

in some SUTs like Dph, this classification turns out to be quite different in
other programs, such as Tcl or Txm.

Unlike traditional operators, most class mutation operators are not ap-
plied in every SUT and they depend on the object-oriented features used by
the programmer. As a result, only five operators create mutants in all the SUTs
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Table 10 Number of Dead Mutants Generated by each Mutation Operator, Sorted by the
Original (Q) and the Coverage-Based (QC) Quality Metric in each Case Study

Position
Tcl Rpc Dph Txm Kmy Dom

Q QC Q QC Q QC Q QC Q QC Q QC

1 33 38 10 38 15 68 24 41 32 32 28 36
2 38 3 9 10 68 15 41 24 76 9 16 28
3 38 38 38 14 9 9 18 24 9 12 8 16
4 3 33 14 9 23 23 138 138 12 26 36 16
5 2 2 2 2 10 10 26 8 16 21
6 2 2 3 3 23 13 4 4 293 8
7 0 0 0 0 24 18 3 3 21 293
8 5 5 13 23 8 4 5 5
9 0 0 4 76 4 4
10 3 3 14 14 2 2
11 5 5 1 1 0 0
12 8 8 2 2 0 0

(OMD, MCO, CID, CDD and CCA). Furthermore, this type of operator usu-
ally engenders a low number of mutants, so finally the quality metric can only
be measured for every case study in one (CID) out of those five operators.
The existence of several operators with the value 0 is due to the number of
equivalent mutants or the few mutants that they generate. When the operator
produces few mutants, it is more likely that only one test case suffices to kill
all the mutants from that operator; this always results in the lowest value for
the quality metric. This fact can be seen in Table 10, which shows the number
of dead mutants generated by the mutation operators when they are sorted
through the metrics in each case study. As it can be seen, both metrics tend
to gather the operators generating more mutants in the top positions of the
classification. Txm is the best example of this fact, where all the operators
creating a number of mutants greater or equal than 10 are above the rest of
operators producing fewer mutants. These results suggest that there is a link
between the quality metrics under study and the number of dead mutants in
each operator. Nevertheless, whether the number of mutants is more or less
high does not seem a decisive factor in the operator classification. While the
aforementioned fact applies to both metrics, there are two cases that suggest
that the new metric is not so linked to the number of mutants as the original
metric (marked in bold in Table 10). In Tcl, the operator CCA, generating
only 3 dead mutants, is able to surpass the operators CID and OMR, each
of them generating more than 30 mutants. Also the operator MCO in Kmy,
which is the most prolific in that SUT with 76 dead mutants, is quite lower in
the coverage-based operator ranking (9th position) than in the ranking based
on the original metric (2nd position). That is indeed the biggest difference
between metrics in these case studies.

Finally, this study requires an evaluation of the impact of difficult to reach
mutants on the quality assigned to each operator, as they are treated as a
separate case by the coverage-based metric. The appearance of difficult to
reach mutants mostly depends on where in the code the operator injects the
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Fig. 5 Percentage of Difficult to Reach Mutants Generated by each Mutation Operator,
Sorted by the Coverage-Based Quality Metric in each Case Study. The Leftmost Point
Represents the Operator at the First Position of the Ranking in each Case Study.

mutation. By their nature, some operators may be more prone to produce
this kind of mutants than others. For instance, it is likely that only a few
test cases invoke a concrete overloaded method or a particular constructor,
and this fact could affect operators which target such methods. In other cases,
as the operator CDD in these experiments, the dead mutants are considered
difficult to reach because of a lack of coverage data (i.e.,

∑
t∈T |Nt| ≤MCOV ,

as explained in Definition 9). Given this context, it is important to clarify
whether producing a high percentage of difficult to reach mutant is a decisive
factor in the quality attached to each operator. With this aim, Figure 5 shows
the percentage of difficult to reach mutants generated by each operator in each
case study when the mutation operators are sorted according to their quality.
As it can be seen, any pattern can be established between the order of the
operators and the percentage of difficult to reach mutants that they produce,
given that the highest percentages are spread across the figure. For instance,
while the operator MCO does not generate any difficult to reach mutant in
Dom and is in the first position of that operator classification, this operator
is responsible for the second highest percentage of this kind of mutants in
Txm and it is however in the middle of that ranking (7th position). Hence, we
conclude that the operator classification based on this metric does not directly
result from the percentage of difficult to reach mutants in this study.
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6.2 Test Suite Size Analysis

Table 11 shows the results of applying test-quality selective mutation based on
the original (Q) and the coverage-based metric (QC) in terms of test suite size.
These values represent the percentage of test cases that are missing from the
original adequate and minimal test suite when the operators under that row
are removed (the mutants from those operators are discarded). As an example,
in the case of Rpc, only using the first four operators following the original
metric (OMR, OMD, CID and MCO), we will be assuming a loss of 26.7% of
the test cases. We have highlighted in bold the cases when the coverage-based
metric leads to a better result than the original metric, and we have used the
symbol ‘=’ when the outcome is the same.

To begin with, the selective strategy following the metrics yields good
results, validating the main approach of these metrics regarding the quality.
The results in Dph, Txm and Dom are the most notable; in these SUTs, none
of the test cases are lost after discarding several operators. It is also remarkable
that only applying the top three operators, we are able to maintain on average
69.0% and 70.8% of the test cases in the adequate and minimal test suite using
the original and the coverage-based metric respectively. We have to note that,
in the case of Rpc and Kmy, the percentage of test cases loss before starting
the selective process is respectively 20% and 2.9% (instead of 0%) because of
the operators that generate fewer than four mutants; these operators cannot
be measured by the metric and are previously removed, but they produce some
useful mutants required to maintain the same adequate and minimal test suite
in these cases.

When comparing both metrics, we can observe that the results are positive
for the coverage-based metric in Tcl, Rpc, Dph and Txm, and negative only
in Kmy. In the case of Dom, the result varies depending on the number of
operators excluded. The behaviour of QCo is especially satisfactory in Txm,
where this metric outperforms the original one in 5 out of 11 subsets of oper-
ators and there is a tie in other 4 cases. In the previous section, we could see
that the operator CCA climbed to the second position in the classification by
the coverage-based metric in Tcl ; even when this operator only generates 3
mutants, that ranking turns out to be better in comparison with the original
metric. Indeed, just selecting the two first operators based on the coverage-
based metric, we would generate 41 mutants and the loss would be 26.7%,
while we would generate 71 mutants and the loss would be 40% taking into
account the original metric.

In the light of the results from Table 11, taking into consideration the
coverage information of the test suite is a fruitful approach for measuring the
quality of mutation operators. The metric, however, assigns a low value to the
operator MCO in Kmy, which results in a significant loss of test cases when
that operator is excluded in the selective process (row 8 in Table 11). We have
no evidence so far about the nature of the test cases that MCO could help
design to extend a test suite for this program. To that end, in the next section
we carry out the analysis of the test suite specificity to complement this study.
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6.3 Test Suite Specificity Analysis

Table 12 depicts a comparison in terms of specificity between the test suite
formed with Q and QC when performing the selective process explained in
Section 5.5. Each value of this table represents the average percentage of mu-
tants killed by the test cases included in the adequate and minimal test suite
for the operators that still remain in the subset. The format of this table is
similar to Table 11. As an example, only with four operators in Kmy, the
percentage of mutants killed by the test cases obtained through the coverage-
based metric is 7.47% on average, and 7.70% in the case of the original metric;
thus, in this example we say that the coverage-based metric outperforms its
original counterpart because the former leads to produce mutants killed by
few test cases (and, therefore, mutants with potential to guide the tester on
the refinement of that test suite with specific test cases). We should note that
the difference in percentage among the SUTs is due to the test suite used for
each program.

By matching the results in this table with the loss of test cases in Table 11,
we can gain a deeper understanding of the performance of the metrics:

– Xml and Dph: In the cases when QCo outperforms Qo in terms of size,
Qo outperforms QCo in terms of specificity. In such cases, the test cases
acquired by means of QCo when compared to Qo are not so specific. How-
ever, in the first row in Xml where the metrics are tied in the size aspect,
now QCo outperforms Qo.

– Kmy: QCo is better in the specificity aspect, but worse in the size aspect.
That means that the test cases lost by using QCo when compared to Qo are
not actually specific (in other words, those missing test cases seem mostly
straightforward as they kill many mutants). Therefore, our metric is prone
to maintain interesting test cases.

– Txm: QCo is better than Qo in both the size and specificity aspect. That
means that Qo not only is losing more test cases, but also that those test
cases are interesting to retain.

In general, these results coupled with the results of the test suite size
analysis suggests that the coverage-based metric provides better performance
than the original metric.

6.4 Answers to Research Questions

Answer to RQ1: How does the coverage information alter the quality
assigned to each mutation operator?

The use of the coverage matrix implies having more precise information
available for the calculations and, therefore, the values that the coverage-
based quality metric gives to mutation operators are in a different scale when
compared to the original quality metric. However, while it is easy to observe
that some operators are often well valued by both metrics, it is also clear that
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the new coverage-based metric alters the quality estimation of some mutation
operators in several cases. Both quality metrics are likely to assign low values
to operators producing few mutants, but this relation seems to be closer in the
case of the original metric. Finally, the results show that the fact of generating
difficult to reach mutants does not have significant impact on the mutation
operator quality.

Answer to RQ2: Does the coverage-based quality metric outper-
form the original quality metric in terms of test suite size? Yes, the
coverage-based metric does outperform the original metric in the conducted
experiments, yielding better results in most of the cases (see Table 11). Addi-
tionally, it is remarkable that the removal of several operators barely reduced
the effectiveness in most programs, which validates the use of a quality met-
ric. In any event, this metric requires to be complemented with information
about test suite specificity in order to know whether operators with low quality
mainly lead to the generation of specific or straightforward test cases.

Answer to RQ3: Does the coverage-based metric allow operators
to be discarded without losing high-quality test cases when com-
pared to the original metric? Yes. Although the original metric exhibits a
good performance in this aspect, when we analyse the test suite size (Table 11)
and the specificity (Table 12) together, the coverage-based metric has the po-
tential to retain more specific test cases in the test suite when the worst rated
operators are excluded. As a conclusion, the test cases lost when applying the
selective strategy based on this metric usually coincide with those that are not
so hard to design.

7 Threats to Validity

The results presented are subject to several limitations: some of them are
inherent to mutation testing in general, while others are due to restrictions in
the conducted studies.

Construct validity: Regarding the construct validity, we have not only
considered the test suite size to measure the performance of the quality met-
rics, but also its specificity. In the former case, we have seen that the size can
be affected by the fact that some trivial test cases might be missing, so com-
puting the specificity helps complement this measurement. In the case of the
specificity, we have measured the average of mutants killed by the test cases,
but the quality of a test suite might be measured through other variables.

Internal validity: The process to obtain execution and coverage matri-
ces and the experimental results reported in this paper has been automated
wherever possible, but there may exist errors in the scripts implemented and
tools used. The results might also be influenced by the manual determination
of equivalent mutants; to counter the threat that the quality metric punishes
mutants incorrectly classified as equivalent, we have categorised as undecided
instead of as equivalent those mutants for which we were unsure. As we cannot
isolate the measure of quality from the test suite, the mutant-driven design of
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new test cases to achieve the necessary adequacy of the test suite and the use
of a single test suite can also impact the results. In this case, using the test
suite distributed with the programs as the model to generate new test cases
and minimising the test suite with an exact algorithm to exclude unproduc-
tive test cases, alleviate respectively the effect of these potential threats to the
validity of the results.

External validity: Most class mutation operators often generate no or
few mutants in each class because they can only be applied under specific
circumstances. This fact hindered us from measuring the quality of several
operators. As a result, only a subset of operators could be studied in each SUT,
but we have used six programs with different features and sizes to minimise
this threat. The quality metrics were applied to class mutation operators in
C++, so we cannot know if the results hold in other contexts.

8 Additional Considerations

Cost implications: As aforementioned, the coverage-based metric is to be
used in advance and not directly in practice. That is, we do not implement
the metric in the mutation tool but we make use of the results of previous
research to know the most valuable operators instead. As such, applying the
quality metric does not involve any additional cost in the testing activity (on
the contrary, it is only useful to reduce its cost). For the same reason, we
obtain an adequate and minimal test suite to calculate the quality metric but
not in practice.

Test suite size: In testing, it is usually desirable to reduce the number of
test cases that must be run as much as possible. Reducing the test suite size is
a good idea when the test quality is not penalised. In other words, we should
not reduce the cost at the expense of the quality. However, in test-quality
selective mutation we favour a subset of operators that is likely to guide us
to a larger test suite than others. Given that the goal of the quality metric
is to highlight operators with great potential in help us add high-quality test
cases, it is worthwhile to form a test suite with as many test cases as possible
to increase the confidence in its fault detection capability.

Operator classification: The final goal of using the coverage-based qual-
ity metric is to sort mutation operators by their associated quality metric in
a general ranking. However, we have seen that there might be variance in the
position of the operators for different programs. More studies are required to
analyse this further, especially applying this quality metric to more applica-
tions in order to achieve an operator classification as generalisable as possible
(also addressing the whole set of mutation operators defined for the language).

Cost reduction techniques: Test-quality selective mutation has been
applied to analyse the performance of the proposed quality metric in this work.
However, it was out of the scope of this paper to evaluate the effectiveness of
a selective strategy in comparison with other techniques for the reduction of
mutants, or to assess if a selective strategy is appropriate for this particular
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case study (C++ class-level operators). This aspect would merit additional
studies in the future.

Language-independent metric: Although class mutation operators for
C++ have been analysed in this paper as a case study to show the behaviour
of the new metric, we should remark that the metric can be applied to any
programming languages and domains.

9 Related Work

Coverage

Coverage information is usually collected in different mutation tools to reduce
the computational cost of applying mutation testing (Vincenzi et al., 2006;
Schuler & Zeller, 2009; Derezińska & Szustek, 2012; Mateo & Usaola, 2012;
Derezinska & Halas, 2014), but we used this information to devise a new metric
to measure operator effectiveness. Bacterio (Mateo & Usaola, 2012) retrieves
coverage data to prevent unnecessary executions of mutants generated with
both traditional and class operators for Java. However, they report that, be-
cause of the use of mutant schemata, they could not leverage this information
for some of their class operators (Mateo & Usaola, 2015). When a mutation
operator changes in some way the structure of a declaration, the mutated el-
ements are not directly executed and the coverage cannot be captured. This
is the case of the operator IHI, which inserts in a subclass a variable member
that hides another variable member with the same name in a base class. Since
MuCPP creates a new version of the program for each mutation, we were able
to locate the lines where the affected element was being referenced in the code.
We used the tool gcov to know which test cases reached the statements where
the mutations were injected. In the work by Papadakis & Malevris (2011), they
analysed whether a test case is able to infect the state of the system or not.
Thus, following their approach would theoretically result in a more accurate
measurement of the coverage-based quality metric.

In their study about the correlation between coverage and test suite effec-
tiveness, Inozemtseva & Holmes (2014) defined the normalized effectiveness
measurement as the number of mutants detected by a test suite, divided by
the number of non-equivalent mutants that the test suite actually covers. The
denominator in that metric is more precise than the one used by the mutation
score (the total number of non-equivalent mutants). The coverage-based met-
ric is even more accurate regarding the coverage, as the coverage of the test
suite is calculated independently for each mutant based on the number of test
cases reaching it and the mutants reached by those test cases.

There are several other works related to mutation testing analysing code
coverage. Zhang et al. (2012) developed the tool ReMT with a focus on re-
gression mutation testing. By studying the coverage in the old version of the
program, this tool can safely reuse previous results and reduce the number
of mutants. Coverage also helps ReMT prioritise test cases for each mutant.
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Papadakis et al. (2014) recently analysed the impact on the code coverage of
mutations in order to classify mutants and mitigate the effects of equivalence.
Thanks to the coverage facilities added to MutPy to reduce the mutants gen-
erated and test cases executed, Derezinska & Halas (2014) were able to discuss
the impact of code coverage in mutation testing. They concluded that code
coverage can significantly decrease the overall mutation time both in first and
higher order mutants.

Metrics

In the study by Estero-Botaro et al. (2015), they first calculated the number of
equivalent, trivial and resistant mutants that each operator generated. Then,
they computed the quality of each mutation operator trying to establish a
threshold that allowed to discard some operators with a low quality. In our
paper, we tried to produce evidence that the quality metric is, in fact, a good
indicator of the mutants that can really help improve the test suite with high-
quality test cases. To that end, we put into practice a selective approach for
the removal of operators depending on the quality that they exhibited. Estero-
Botaro et al. (2015) analysed in depth the connection between their quality
metric and the formulas of effectiveness by Derezińska (2006), utility of op-
erators by Smith & Williams (2009) and mutation operator strength by Hu
et al. (2011). In this paper, we also studied the conditions under which our
metric behaves as the original metric. Stubborn mutants defined by Yao et al.
(2014) (non-equivalent mutant not killed by a test suite complying with branch
coverage criteria) are less resistant to be killed than coverage-based resistant
mutants since stubborn mutants only require that a single test case reaching
the mutation is not able to uncover it. The mutation tool MuRanker (Namin
et al., 2015) outputs a particular ranking of mutants for each SUT based on a
prediction about how difficult it is to kill each of its mutants. This approach
is different from the use of a quality metric: the latter aims to reduce testing
effort based on empirical evidence of the usefulness of each mutation operator.

While Derezińska (2006) and Smith & Williams (2009) did not impose any
restriction to the test suite when computing their respective metrics, Mresa
& Bottaci (1999) and Hu et al. (2011) assessed operators with adequate and
non-redundant test suites. Estero-Botaro et al. (2015) went further by estab-
lishing the condition of minimality to the test suite. We also derived adequate
and non-redundant test suites of the minimum size because they exclude test
cases that may cause deviations in the values. Ammann et al. (2014) recently
proposed using minimal sets of mutants in addition to minimal test suites, but
they used approximation algorithms instead of an exact version. From their
experimental results, the authors of the original quality metric suggested that
the operators with an average metric below the medians of Qo and QDo

may
be candidates to be discarded in the future. This proposal would require fur-
ther consideration with the new quality metrics. Similarly, Hu et al. (2011)
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recommended the omission of those expensive class operators in Java with a
low mutation operator strength at the same time.

Selective mutation

Selective mutation has been broadly used in the past as a way to reduce the
large computation expenses. In the first study about this cost reduction tech-
nique, Wong & Mathur (1993) found that just using two operators provided
a significant reduction in the number of mutants examined and test cases re-
quired, but this only implied a small loss in the effectiveness. The experiments
conducted by Offutt et al. (1993), excluding the six most prolific operators
for Fortran, yielded a reduction over 60% of the mutants without a meaning-
ful decrease of the mutation score. Removing operators of a similar syntactic
category has been another traditional approach to selective mutation (Offutt
et al., 1996; Mresa & Bottaci, 1999). Barbosa et al. (2001) and Namin et al.
(2008) tried to find sufficient sets of operators for C programs by defining a
set of guidelines and a statistical analysis procedure respectively. Banzi et al.
(2012) also applied a genetic algorithm for the selection of mutation opera-
tors. They used a multi-objective approach: maximise the mutation score and
minimise the number of mutants generated. In this paper, we applied the tra-
ditional approach to selective mutation of removing all the mutants generated
by the operators discarded. As aforementioned, other recent studies suggest
that operator-based selection is not superior to mutant-based selection (Zhang
et al., 2010; Gopinath et al., 2015). Delgado-Pérez et al. (Delgado-Pérez et al.,
2017b), who proposed to assess the effectiveness of mutation operators for the
evaluation and the refinement of the test suite separately, reported that rank-
based selection is a preferable option to the removal of class-based operators
in general.

Class mutation operators

Because of the increase in the presence of object orientation in the indus-
try, many of the works related to mutation testing have focused on this
paradigm (Ma et al., 2002; Derezińska, 2006). Most of the studies regarding
class-based mutation operators have been carried out using mutation tools that
implement Java (Ma et al., 2005) and C# operators (Derezińska & Szustek,
2007). Two of the most recent and relevant experiments about this kind of op-
erators were conducted by Ma et al. (2009) and Derezińska & Rudnik (2012)
for Java and C# respectively, and mutation operators at the class level were
surveyed by Ahmed et al. (2010). Although there exists a previous work that
proposes different class-based mutations for C++ (Derezińska, 2003), a set of
class operators for this language was recently defined and analysed by Delgado-
Pérez et al. (2015, 2017a).
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10 Conclusion

This paper has presented a coverage-aware quality metric that allows for a
more accurate measurement of operator effectiveness when refining test suites
with high-quality test cases. Our metric led us to work with novel concepts,
such as coverage matrix (representing the mutants executed by each test case)
and difficult to reach mutants (those which are scarcely covered by the test
suite). As a first important finding, our metric satisfied the expectations as a
mechanism for the reduction of the number of mutants without a meaningful
loss of effectiveness. The empirical results when using class mutation operators
in C++ suggest that our quality metric outperforms the comparable metric
by Estero-Botaro et al. (2015). By exploiting test-quality selective mutation
(obtaining a reduced set of operators without significantly losing test improve-
ment power), we could observe that our metric enables us to form not only a
larger test suite, but also one that retains more specific test cases. The new
metric would also allow for a higher reduction of mutants since it is not so
likely that the most prolific operators are among the most valued operators.
Whether losing some effectiveness compensates the reduction in the cost or
not, the decision should be taken by the tester depending on the thoroughness
required with each SUT.

As for the future work, while this metric has shown a good performance
when applied to C++ class-based operators, its evaluation with other mutation
operators and programming languages could offer a deeper understanding as
well as determine to which extent it is fruitful. Likewise, we aim at obtaining
a ranking of operators based on this new metric as general as possible. This
operator classification could serve as a practical reference to undertake test-
quality selective mutation and balance the expense of the technique and the
effectiveness when improving a test suite. Further refinements of this metric,
or the definition of similar ones including new information not contemplated
yet, could help us gain insight about operator effectiveness.
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A., & Domı́nguez-Jiménez, J. J. (2017a). Assessment of class mutation
operators for C++ with the MuCPP mutation system. Information and
Software Technology . 81 , 169–184. 10.1016/j.infsof.2016.07.002.

Delgado-Pérez, P., Segura, S., & Medina-Bulo, I. (2017b). Assessment of C++
object-oriented mutation operators: A selective mutation approach. Soft-
ware Testing, Verification and Reliability , 27 . 10.1002/stvr.1630.

DeMillo, R., Lipton, R., & Sayward, F. (1978). Hints on test data selection:
Help for the practicing programmer. Computer , 11 , 34–41. 10.1109/C-M.
1978.218136.
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